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ABSTRACT 

 
This short theoretical work discusses some problems of finding of the suitable eigenvalues and eigenvectors. The 
eigenvalues and eigenvectors represent the solutions of the coupled equations of motion written in the well-known tensor 
form. These coupled equations of motion describe shear-horizontal (SH) wave propagation in the transversely isotropic 
piezoelectromagnetic materials of class 6mm when the SH-wave propagation is coupled with both the electrical and 
magnetic potentials. It is stated that as many as six eigenvalues can be soundly found for the problem. The problem is 
that some eigenvalues result in the corresponding certain eigenvectors and some eigenvalues allow existence of uncertain 
eigenvectors that can be chosen by a researcher. This uncertainty allows researchers to choose several certain forms for 
the uncertain eigenvectors. It is discussed that the author of this report has used the certain forms for the uncertain 
eigenvectors that are naturally coupled with the certain eigenvectors. However, some researchers suggest to use the 
following forms for the uncertain eigenvectors: (0,1,0) and (0,0,1). It is stated that the simplest and perhaps convenient 
eigenvectors in the forms of (0,1,0) and (0,0,1) are actually unsuitable because they are independent from the certain 
eigenvectors and the CMEMC coupling mechanisms. It is very important to use suitable eigenvectors because different 
forms of them can result in different final expressions for the velocities of the SH-waves. The SH-wave velocity is a very 
important wave characteristic and evaluation of its value can help for creation and optimization of novel technical 
devices based on surface, interfacial, and plate SH-waves.  
 
PACS: 51.40.+p, 62.65.+k, 68.35.Gy, 68.35.Iv, 68.60.Bs, 74.25.Ld, 74.25.Ha, 75.20.En, 75.80.+q, 81.70.Cv  
Keywords: Transversely isotropic piezoelectromagnetics, magnetoelectroelastic plates, magnetoelectric effect, new SH-
waves.  
 
INTRODUCTION  
 
This theoretical work discusses the problems of finding of 
suitable forms of the eigenvalues and eigenvectors. The 
found forms of the eigenvalues and the corresponding 
eigenvectors represent the solutions of the coupled 
equations of motion written in the well-known tensor 
form and can result in final expressions for the suitable 
propagation velocities of the shear-horizontal (SH) 
acoustic waves coupled with both the electrical and 
magnetic potentials. This difficulty touches the 
propagation problems of the surface (Zakharenko, 2010), 
interfacial (Zakharenko, 2012a), and plate (Zakharenko, 
2012b) SH-waves in the transversely isotropic 
piezoelectromagnetics of class 6 mm.   
 
The piezoelectromagnetic (composite) materials, also 
known as the magnetoelectroelastic media, are eminent as 
smart materials due to the fact that the electrical 
subsystem of the materials can interact with the magnetic 

subsystem via the mechanical subsystem, and vice versa. 
Therefore, it is vital to be familiar with the wave 
characteristics of such (composite) materials due to 
possible constitution of new technical devices with a high 
level of integration. It is understandable that this 
knowledge can help for further miniaturization of various 
technical devices and be used for the nondestructive 
testing and evaluation of piezoelectromagnetic 
(composite) materials. There is currently much review 
work on the magnetoelectric effect and the 
piezoelectromagnetics possessing this effect together with 
the other effects such as the piezoelectric and 
piezomagnetic effects. It is thought that the most 
complete list of review works on the subject is given in a 
first review paper by Zakharenko (2013a) concerning the 
SH-wave propagation problems in such smart materials.   
 
The discussions highlighted in this short report are based 
on the results obtained in theoretical works (Zakharenko, 
2010; Zakharenko, 2012a; Zakharenko, 2012b) that use 
certainly found eigenvalues and eigenvectors. However, 
some researchers believe that the natural eigenvalues and *Corresponding author email: aazaaz@inbox.ru 
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the corresponding eigenvectors exploited in books 
(Zakharenko, 2010; Zakharenko, 2012a; Zakharenko, 
2012b) for the transversely isotropic case cannot be the 
single possibility. They offer the other eigenvectors that 
actually represent an artificial case. This is also discussed 
below. Also, it is necessary to mention recent theoretical 
works (Wang et al., 2007; Liu et al., 2007; Wei et al., 
2009; Melkumyan, 2007) that do not provide any 
eigenvalues and eigenvectors. The main expressions and 
discussions are given below in the following section.  
 
Problems of finding of eigenvalues and eigenvectors  
It is central to know the propagation directions of the 
shear-horizontal (SH) elastic waves when they can be 
coupled with both the electrical and magnetic potentials. 
For the transversely isotropic piezoelectromagnetic 
material of class 6 mm, the suitable propagation direction 
is given in the review paper written by Gulyaev (1998) 
and the coordinate system is shown in review paper by 
Zakharenko (2013a). This propagation direction for the 6 
mm materials is different from the suitable propagation 
direction for the cubic piezoelectromagnetics 
(Zakharenko, 2013a; Zakharenko, 2011). Following this 
review paper, it is possible to state that the SH-wave 
propagation direction must be managed along the free 
surface of the piezoelectromagnetics when both the 
surface normal and the propagation direction are 
perpendicular to the sixfold symmetry axis of the 6mm 
material. In this configuration, the SH-waves are 
polarized along the sixfold symmetry axis. This is the 
case of pure waves where the pure SH-waves can be 
separately studied (Lardat et al., 1971; Dieulesaint and 
Royer, 1980). To study the SH-wave propagation, the 
quasi-static approximation (Dieulesaint and Royer, 1980; 
Auld, 1990) must be used when the SH-waves are 
coupled with both the electrical and magnetic potentials.  
  
In the case of the pure SH-wave propagation, the 
corresponding tensor form of the equations of motion for 
the piezoelectromagnetic (6 mm) medium can be written 
(Zakharenko, 2010; Zakharenko, 2012a; Zakharenko, 
2012b; Zakharenko, 2013a). Also, it is essential to 
mention the following nonzero material parameters 
(Zakharenko, 2010; Zakharenko, 2012a; Zakharenko, 
2012b; Zakharenko, 2013a; Nye, 1989; Newnham, 2005): 
the elastic stiffness constant C, piezoelectric constant e, 
piezomagnetic coefficient h, dielectric permittivity 
coefficient ε, magnetic permeability coefficient µ, and 
electromagnetic constant α. These material constants are 
defined as follows: C = C44 = C66, e = e16 = e34, h = h16 = 
h34, ε = ε11 = ε33, µ = µ11 = µ33, and α = α11 = α33 
(Zakharenko, 2010; Zakharenko, 2012a; Zakharenko, 
2012b; Zakharenko, 2013a). Solving the corresponding 
equations of motion written in the tensor form 
(Zakharenko, 2010; Zakharenko, 2012a; Zakharenko, 
2012b), it is possible to obtain all the eigenvalues and the 
corresponding eigenvectors. To discuss the problem of 

finding of suitable eigenvalues and eigenvectors is the 
main purpose for this short report.  
 
When the SH-wave propagation is coupled with both the 
electrical (φ) and magnetic (ψ) potentials, the 
corresponding tensor form of the coupled equations of 
motion can be expressed by three homogeneous equations 
written in the following matrix form (Zakharenko, 2010; 
Zakharenko, 2012a; Zakharenko, 2012b):  
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where m = 1 + n3
2 and ( )000 ,, ψϕU = ( )0

5
0
4

0
2 ,, UUU  are 

unknown and must be found. n3 represents the 
eigenvalues and U0, φ0, and ψ0 are the eigenvector 
components. In equations (1), ρ and Vph are the mass 
density of the piezoelectromagnetic material and the 
phase velocity, respectively. The phase velocity Vph is 
defined by the following relation: Vph = ω/k, where ω is 
the angular frequency and k is the wavenumber in the 
propagation direction of the SH-waves. Also, Vt4 stands 
for the speed of the shear-horizontal bulk acoustic wave 
(SH-BAW) uncoupled with both the electrical and 

magnetic potentials, ρCVt =4 .   

 
All the suitable eigenvalues n3 can be determined when 
the determinant of the coefficient matrix in equations (1) 
vanishes. Expanding this matrix determinant, the 
following secular equation representing a polynomial 
must be obtained:  

( ) ( )[ ] 01 2
4

2 =−+×× tphem VVmKmm .  

 
This polynomial is already written in a convenient form 
of three factors because to find the polynomial roots 
means to write a polynomial as the suitable factors. So, 
the first, second, and third factors of the polynomial 
written above reveal the following eigenvalues:  
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In definition (4), the velocity denoted by Vtem represents 
the speed of the SH-BAW coupled with both the electrical 
and magnetic potentials. It is defined by the following 
expression:  
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In expression (5), 2
emK  stands for the coefficient of the 

magnetoelectromechanical coupling (CMEMC). It can be 
calculated with the following formula:  
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It is understandable in equality (6) that the CMEMC can 
be represented as the material parameter depending on the 
following three different coupling mechanisms 
(Zakharenko, 2013b; Zakharenko, 2013c):  
 

αµ he − , εα he − , 2αεµ −  (7) 

 
With the found eigenvalues defined by expressions (2), 
(3) and (4), it is necessary to determine the corresponding 
eigenvectors. Using coupled equations (1), it is also 
possible to determine the eigenvector explicit forms such 

as ( )000 ,, ψϕU  for all the suitable eigenvalues n3. It is 

natural to use the first equation in equations’  set (1) to 
demonstrate the dependence of the eigenvector 
component U0 on both the components φ0 and ψ0. Thus, 
this dependence reads   
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Exploiting equation (8) for the second and third equations 
in equations’  set (1), one can exclude the eigenvector 
component U0 to deal with only two equations in two 
unknowns such as φ0 and ψ0. Consequently, these two 
equations are composed as follows:  
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where  
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It is now necessary to state that all the suitable 
eigenvector components can be obtained by means of the 
use of each of the found eigenvalues defined by equations 
from (2) to (4). As soon as each of the eigenvalues is used 
for equations from (8) to (10), the corresponding 
eigenvector components are determined. Indeed, each 
eigenvalue possesses its own certain set of the eigenvector 

components and it is natural to use the obtained equations 
from (8) to (10) to define the components because these 
equations follow from the coupled equations of motion 
written in matrix form (1). However, equations (9) and 
(10) allow each eigenvalue to naturally have two different 
sets of the eigenvector components. They are discussed 
below as cases (i) and (ii).  
 
Case (i)  
 
In this case, equations (8) and (9) are used. Accounting 
the fact that m = 1 + n3

2 = 0 for eigenvalues (2) and (3), it 
is possible to have the following eigenvector components 
such as U0, φ0, and ψ0:  
 

( ) ( ) ( )εαψϕψϕ −== ,,0,,,, (3)0(3)0(3)0(1)0(1)0(1)0 UU  (12) 

 
One can find that the found eigenvector components 
defined by expression (12) satisfy three homogeneous 
equations (1). This is true because m = 0 leads to all zero 
components for the second and third columns of the 
coefficient matrix in equations (1). Therefore, a 
wavevector of the following form is valid for this case: (0, 
x, y) where x ≠ 0 and y ≠ 0. This uncertainty is naturally 
resolved by the use of eigenvector (12) coupled with the 
certain eigenvector corresponding to eigenvalue (4). 
Employing expressions (8) and (9) for eigenvalue (4) with 
m ≠ 0, the corresponding eigenvector components (U0, φ0, 
and ψ0) can be written as follows:    
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It is very important to state that the found eigenvector 
components φ0(5) and ψ0(5) from expression (13) satisfy 
both equations (9) and (10).   
 
The eigenvector components such as φ0 and ψ0 of 
eigenvectors (12) and (13) are naturally coupled as 
follows:   
 

=+=+ )3(0)3(0)1(0)1(0 ψϕψϕ hehe   

εαψϕ hehe −=+ )5(0)5(0  (14) 

 
It is clearly seen in equalities (14) that the second 
coupling mechanism of three CMEMC mechanisms (7) 
couples the eigenvector components. This reveals the 
physical sense for the found eigenvectors (12) and (13).  
 
In expression (13), the coefficient of the 

electromechanical coupling (CEMC) is denoted by 2
eK  
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and the other parameter denoted by 2
αK  couples only the 

terms with the electromagnetic constant α in CMEMC (6). 
They are respectively defined as follows:  
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Case (ii)  
 
In this second natural case, it is natural to utilize 
equations (8) and (10) to obtain the eigenvector 
components such as U0, φ0, and ψ0. Using m = 1 + n3

2 = 0, 
it is possible to have the following eigenvector 
components for eigenvalues (2) and (3):  
 

( ) ( ) ( )αµψϕψϕ −== ,,0,,,, (3)0(3)0(3)0(1)0(1)0(1)0 UU
  (16) 

 
For eigenvalue (4) with m ≠ 0, the corresponding 
eigenvector components are found as follows:    
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where  
 αµψϕψϕψϕ hehehehe −=+=+=+
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Equalities (18) also disclose the physical sense because 
eigenvector components φ0 and ψ0 in eigenvectors (16) 
and (17) are coupled via the first mechanism of three 
coupling mechanisms (7) of CMEMC (6).  
 
It is vital to state here that the found eigenvector 
components φ0(5) and ψ0(5) from expression (17) also 
satisfy both equations (9) and (10). In expression (17), the 

non-dimensional parameter 2
mK  called the coefficient of 

the magnetomechanical coupling (CMMC) is defined by  

µC

h
Km

2
2 =  (19) 

 
Case (iii)  
 
This case relates to the other mathematically possible 
forms for the eigenvectors that can be even 
mathematically more convenient but have no any physical 

sense. These eigenvectors are possible because of the 
uncertainty for the case of m = 0 for eigenvalues (2) and 
(3). Therefore, m = 0 leads to all the zero components in 
the second and third columns of the coefficient matrix in 
equations (1). As a result, some researchers suggest the 
use of the following form of the eigenvectors for 
eigenvalues (2) and (3): (0, x, y) where either x = 1 or y = 
1, or x = y = 1 occurs. The latter representing more 
complicated case will be not discussed in this report 
below. In addition to certain eigenvectors (13) and (17) 
for eigenvalue (4), some researchers believe that possible 
convenient eigenvector forms can be chosen for the 
eigenvalues defined by expressions (2) and (3) as follows:  
 

(0,1,0), (0,1,0) (20) 
(0,0,1), (0,0,1) (21) 
(0,1,0), (0,0,1)  (22) 
(0,0,1), (0,1,0)  (23) 

 
It is clearly seen that none of the artificial eigenvectors 
defined by expressions from (20) to (24) has any 
connection to certain eigenvectors (13) and (17). It is 
thought that eigenvectors (20) and (21) of all the artificial 
eigenvectors are more referable compared with the other 
two eigenvectors defined by expressions (22) and (23) 
because it is natural to deal with the same eigenvectors in 
the case of identical eigenvalues (2) and (3). Indeed, 
eigenvectors (22) and (23) were composed by mixing 
eigenvectors (20) and (21). However, some researchers 
would like to exploit mixed eigenvectors (22) and (23) 
because they do not lead to uncertainty for the phase 
velocity in comparison with eigenvectors (20) and (21). It 
is necessary to state that eigenvectors (12) and (16) also 
leads to the uncertainty for the phase velocity that is 
readily resolved because the corresponding mechanism of 
three coupling mechanisms (6) of CMEMC (7) works. 
The artificial eigenvectors defined by expressions from 
(20) to (23) have no any connection with CMEMC 
coupling mechanisms (6) and certain eigenvectors (13) 
and (17). As a result, they can actually lead to fake results 
for the phase velocity.  
 
CONCLUSION  
 
This report has briefly discussed the problem of finding of 
the eigenvalues and the corresponding suitable 
eigenvectors. Due to the discussed uncertainty for 
eigenvalues (2) and (3), the corresponding eigenvectors 
can be chosen in several different ways. Three cases were 
discussed, of which the first and second are natural 
because they are based on equations from (8) to (10) 
which were received from coupled equations of motion 
written in matrix form (1). On the other hand, it was also 
discussed the other eigenvectors given by expressions 
from (20) to (23) that have mathematically convenient 
forms but have no physical sense because they have no 
any connection with the certain eigenvectors defined by 
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expressions (13) and (17) and cannot demonstrate any 
connection with one of CMEMC coupling mechanisms 
(7).  
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